ГЕОТЕРМАЛЬНЫЕ ТЕПЛОНАСОСНЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ (ГТСТ) И ЭФФЕКТИВНОСТЬ ИХ ПРИМЕНЕНИЯ В КЛИМАТИЧЕСКИХ УСЛОВИЯХ РОССИИ
В отличие от «прямого» использования высокопотенциального геотермального тепла (гидротермальные ресурсы), использование грунта поверхностных слоев Земли как источника низкопотенциальной тепловой энергии для геотермальных теплонасосных систем теплоснабжения (ГТСТ) возможно практически повсеместно. В настоящее время в мире это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии [1,2].
Грунт поверхностных слоев Земли фактически является тепловым аккумулятором неограниченной мощности. Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м [3].
Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата (рис. 1). С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3°С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило эта величина составляет 0,05–0,12 Вт/м2.
При эксплуатации ГТСТ грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию[4]. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае, как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды [5,6].
Рис. 1. График изменения температуры грунта в зависимости от глубины
К характерным особенностям теплового режима систем сбора тепла грунта как объекта проектирования также следует отнести и так называемую «информативную неопределенность» математических моделей, описывающих подобные процессы, или, иначе говоря, отсутствие достоверной информации о воздействиях на систему окружающей среды (атмосферы и массива грунта, находящихся вне зоны теплового влияния грунтового теплообменника системы теплосбора) и чрезвычайную сложность их аппроксимации. Действительно, если аппроксимация воздействий на систему наружного климата, хотя и сложна, но все же при определенных затратах «машинного времени» и использовании существующих моделей (например, «типового климатического года») может быть реализована, то проблема учета в модели влияния на систему атмосферных воздействий (роса, туман, дождь, снег и т.д.), а также аппроксимация теплового влияния на грунтовый массив системы теплосбора подстилающих и окружающих его слоев грунта на сегодняшний день практически не разрешима и могла бы составить предмет отдельных исследований. Так, например, малая изученность процессов формирования фильтрационных потоков грунтовых вод, их скоростного режима, а также невозможность получения достоверной информации о тепловлажностном режиме слоев грунта, находящихся ниже зоны теплового влияния грунтового теплообменника, значительно осложняет задачу построения корректной математической модели теплового режима системы сбора низкопотенциального тепла грунта.
Для преодоления описанных сложностей, возникающих при проектировании ГТСТ, могут быть рекомендованы созданные в ОАО «ИНСОЛАР-ИНВЕСТ» и апробированные на практике метод математического моделирования теплового режима систем сбора тепла грунта и методика учета при проектировании ТСТ фазовых переходов влаги в поровом пространстве грунтового массива систем теплосбора....